A Summary of SAE 550:

Systems Architecting and the Political Process

University of Southern California
Viterbi School of Engineering
Systems Architecture & Engineering (SAE)

Mr. Ken Cureton & Dr. Edwin Ordoukhanian August 2025

SAE-550-Summary.pptx

Copyright © 2025 Kenneth L. Cureton & Edwin Ordoukhanian

Mr. Kenneth Cureton

- Instructor of many Systems Architecting & Engineering (SAE)
 classes since Fall of 1996
- Senior Systems Engineer (Retired) for The Boeing Company Huntington Beach CA-- Boeing Defense, Space, & Security: Phantom Works
 - Manned Space, Launch Systems, Satellite Systems, Networked Systems, Cyber Security, and Defense Conversion
- Was employed as a Computer Hardware/Software and Systems Engineer for 46 years: Government, Small Business, & Aerospace Sectors
- Professional Societies (Senior Member): AIAA, INCOSE, IEEE
 - IEEE SMC former co-chair MBSE Working Group
 - INCOSE Resilient Systems Working Group (RSWG) chair
 - AIAA Space Settlement Technical Committee Member
 - Network-Centric Operations Industry Consortium (NCOIC)
 Technical Council Chair Emeritus
- Formal Education:
 - BS in High-Energy & Nuclear Physics
 - MS in Systems Architecting & Engineering

Dr. Edwin Ordoukhanian

Experience:

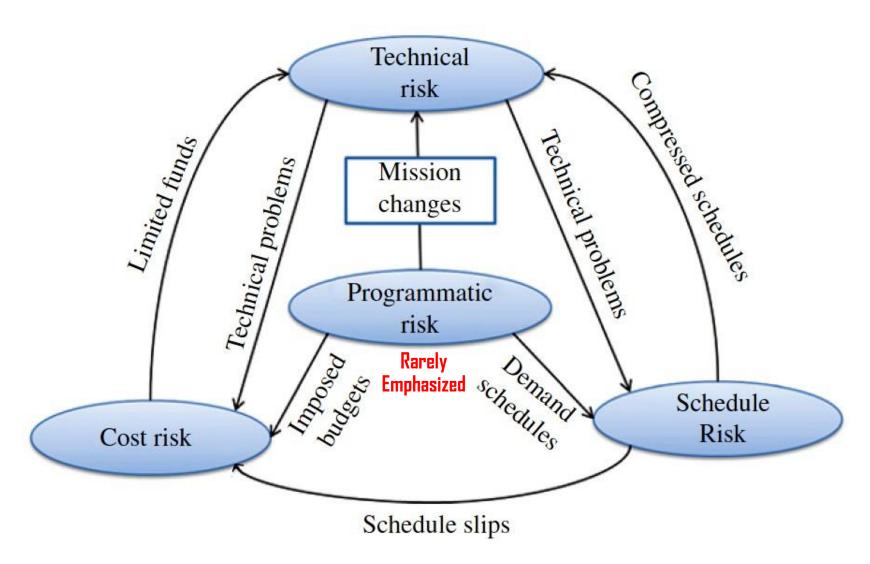
- Systems Engineer at Crane Aerospace and Electronics
 (MBSE, Brake Control System Development, Modeling and Simulation)
- Former Teaching Assistant at USC
 (SAE 549, SAE 541, SAE 548, SAE 550, SAE 551, SAE 560)
- Former Research Assistant at USC (Self-Driving Cars, UAV Swarms)

Education:

- Ph.D., Astronautical Engineering, USC
 Specializing in Systems Architecting and Engineering
- M.S. Aerospace Engineering, USC
- B.Eng., Automation and Control, National Polytechnic University of Armenia

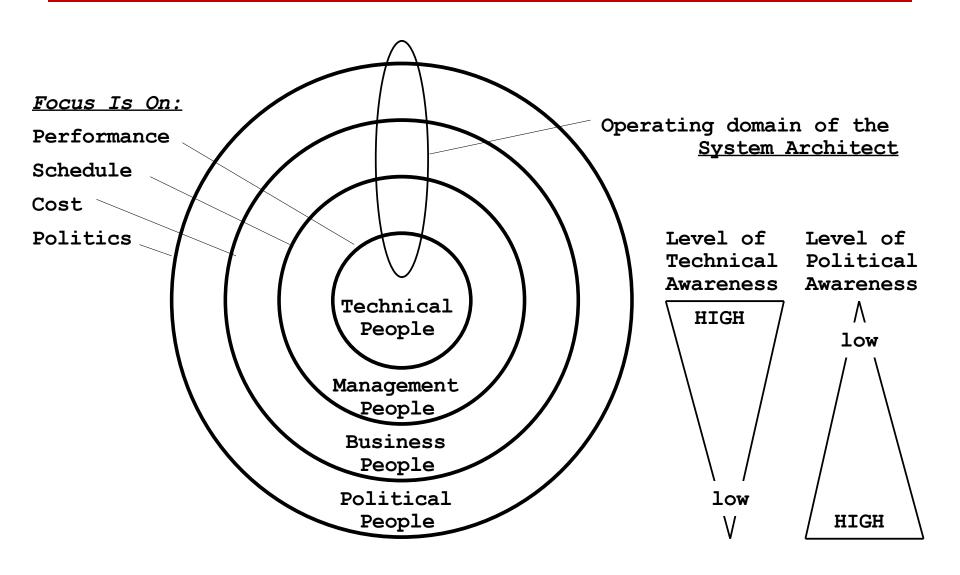
Societies

- INCOSE and INCOSE TLI, AIAA, IEEE
- Research Interest:
 - MBSE, Autonomous Systems and SoS, Engineered Resilient Systems, Complex Engineered Systems, Human-System Integration


SAE 550 Objective

- **☐** Part of Systems Architecting & Engineering (SAE) Series
 - Objective:
 - Analysis of risks inherent in managing high-tech/high-cost government-funded or corporate-funded engineering programs; tools and techniques for coping with the impacts of politically-driven budgets on the engineering design process.
 - Elective Course in University of Southern California's Masters Program in Systems Architecting & Engineering
 - Class originated by Dr. Brenda Forman in the early 1990s
 - Class restarted in the Fall of 1996 to Fall 2014 by Ken Cureton, then Dr. Elliot Axelband for 2015-2016, Ken Cureton resuming in Spring of 2017
 - About 1,000 Students have completed the class
 - Student Demographics:
 - About ½ are employed by aerospace/defense companies
 - About 1 out of 20 are Air Force, Space Force, Navy, or Army officers
 - Remainder are foreign students or those with more of a commercial background

SAE 550 Value to Students


- Not a Political Science Course!
 - Provides Political Risk Analysis and Mitigation Techniques
 - Supplements Classic Cost, Schedule, Performance & Programmatic Risk Management Systems Engineering Techniques
 - Demonstrates the need for Organizational Resilience
- Unique Class Emphasis: Impact on Systems Architecture
 - Other Courses Focus on Political Impact on Technologies
- On Completion of the Course, Students:
 - Grasp the Real-World Processes for Project Approvals, Funding, Budget Scheduling, and Regulatory Control
 - Understand the Necessity for Strong, Coherent Constituency and "Keeping the Program Sold"
 - Demonstrate Agility in Political Reasoning (Negotiation, Compromise & Appearance) to Supplement Engineering Logic
- □ Typical Student Feedback: "I am now far more effective in project management and real-world systems architecting!"

Emphasizes *Programmatic* Risk Management

Source: INCOSE Systems Engineering Handbook, v4, INCOSE-TP-2003-002-04 2015

Visualization of the Socio-Political Situation

Source: K. Cureton "Assured Crew Return Vehicle" Case Study, USC SAE 599, Fall 1993

SAE 550 Class Format

- Semester Class, 15 Weeks, One night/week
 - Weekly Lectures, 2 hours 40 minutes each
 - 1 Final Exam week (scheduled but not used)
- Distance Learning Format via Distance Education Network (DEN)
 - Typically only a few students in the TV Studio, majority of students are scattered across the US
 - Class content webcasted for online/offline viewing
 - Class presentations hosted on DEN System for student preview
 - Class content in weekly reading materials (including 9 Case Studies), hosted on DEN Software
 - DEN System provides for Chat or Voice Interaction online,
 Discussion Boards offline
 - Simultaneous Webex for real-time interaction

SAE 550 Class Grading

- One Research Paper required of each student
 - In place of a Final Exam, 50% of class grade
 - Papers are typically 20 single-spaced pages, suitably formatted for publication in a technical journal
 - Student materials on "How to Write a Research Paper"
 - Students choose research topic
 - Submit abstract for approval by Instructor
- 9 Case Studies in lectures, 5 other Case Studies for Homework
 - Homework analysis is 25% of class grade
- One Take-Home Midterm Exam, 25% of class grade
- Structured analysis required for paper, midterm, homework
 - Specific analyses required in each case to demonstrate student's ability to apply the class fundamentals: Political Risk Mitigation Factors
 - Also known as the Political "Facts Of Life" or FOLs

SAE 550 "Political Facts of Life"

(Heuristics as envisioned by Dr. Brenda Forman)

1. Politics, Not Technology, Controls What Technology Is Allowed To Achieve

- Budget Limitations (Amount of Money, Color-Of-Money)
- Regulatory Constraints (Export/ITAR, "Fencing", Laws)
- Schedule Deadlines (Not enough time to do it "Right")

2. Cost Rules

- Usually have to Overstate the Benefits and Understate the Costs just to get a Program Started
- Program Funding has to be Re-Won each Year
- Government Rarely Provides an Optimal Funding Profile (prefers reduced & level-loaded funding over a longer time)
- 3. A Strong, Coherent Constituency Is Essential
 - Every Successful Program Must Serve Multiple Agendas
 - Government Loves to Dictate Multiple-Mission Systems

Source: Maier, M. W., & Rechtin, E. (2002). The Art of Systems Architecting (2nd ed.). Boca Raton, FL: CRC Press. ISBN: 0-8493-0440-7 Chapter 12 (contributed by Dr. Brenda Forman)

SAE 550 "Political Facts of Life"

(Heuristics as envisioned by Dr. Brenda Forman)

4. Technical Problems Become Political Problems

- All Big-Budget High-Tech Government-Funded (or Corporate-Funded) Programs Operate in a Political Fishbowl
 - Ever-present Foes Looking For Excuses To Seize Funding
 - Valid Scientific Reports Will Be Misused for Political Purposes
- 5. The Best Engineering Solutions Are Not Necessarily The Best Political Solutions
 - For Technical People: the Illogic of Negotiation, Compromise and Appearance in Politics
 - Programs That Create Jobs Are More Likely To Be Funded
 Than Programs With Theoretical Goals (Like Basic Research)
 - For Political People: the Naiveté of Scientific Reasoning and Logical Choices in Engineering and Science
 - Most Politicians Have neither the Technical Background nor the Time to Understand Technical Implications of Their Choices

Source: Maier, M. W., & Rechtin, E. (2002). The Art of Systems Architecting (2nd ed.). Boca Raton, FL: CRC Press. ISBN: 0-8493-0440-7 Chapter 12 (contributed by Dr. Brenda Forman)

SAE 550 Other "Political Facts of Life"

- **6.** Timing Is Everything
- 7. Political Problems Become Technical Problems (or Opportunities)
- **8.** Politics Prefers Immediate, Near-Term Gratification
 - Political Process Constantly Striving to Satisfy Immediate, Urgent Needs With Insufficient Resources (Money, Time) (*This Year* is More Important Than Out-Years)
 - Election "Event Horizon" Also Encourages Near-Term Focus (in USA: 2 Years for House, 4 Years for President, 6 Years for Senate)
- 9. Politics Believes In Gurus And Heroes
 - And Once Tarnished, Forever Untrustworthy (Stink Sticks)
- 10. A Catchy Slogan Is Essential To Getting Attention
- 11. Perception Is Often More Important Than The Truth
- 12. Staffers Shape Decision-Making
- 13. Mental Bias Due To Risk Denial

SAE 550 Introductory Lecture #1

- Syllabus
 - Homework Assignments
 - Research Paper
- Definitions
 - "The Political System"
 - Coping Skills for the Modern Design Engineer
 - Role of the System Architect in the Political Process
- Introduction to the Political Facts Of Life
 - Parallels in Our Personal Lives
 - Show Intimate Relationship Between Engineering Design Process And Pressures Of Political Process
 - Help Students To Understand That Political Process
 - To Give Confidence & Effectiveness In Future
 - Emphasis on Engineering and not on Political Science!

SAE 550 Lecture #2: Budget Processes

- Description of the U.S. Federal Budget Process
 - Brief Overview of PPBE Process (including POM & FYDP)
 - President's Budget Request
 - Generation of the Congressional Budget Bills
 - Signing Into Law by President (or Threats of Veto)
 - Continuing Resolutions, Rescissions, Plus-Ups, Earmarks
 - PAYGO, Nunn-McCurdy Act, Clinger-Cohen Act
 - Mandatory (Entitlements) vs. Discretional Funding
 - Efforts to Balance the Federal Budget
 - Deficit Spending, Line-Item Veto, "Pork Barrel" Politics, Acquisition Reform, Budgetary Reform, Interest on the National Debt
- Investigation of Difficulty in Reducing Governmental Budgets and Complexity

SAE 550 Lecture #3: FOL Characteristics and Defense

- In-Depth Characteristics of the Political Facts Of Life (FOL)
 - Analyzes WHY things happen according to the Political FOLs
 - Identify root causes and potential impacts on programs
 - Discuss "lessons learned" and potential defenses
- The Need for Political Risk Mitigation
 - Coping Skills and Defensive Engineering (Similar to Need for Performance/Cost/Schedule Risk Mitigation)

SAE 550 Lecture #4: Case Study #1

- Launch Systems:
 - The Original Space Shuttle vs. Eventual Space Shuttle
 - Impact on Expendable Launch Vehicles (e.g. CELV)
 - Contrast of American vs. Russian Approaches
- Space Transportation Infrastructure Constituency
 - The Space Race: Sputnik Apollo, recent resurgence
 - A View Into the Future: China, Japan, India, Europe, etc.
 - Intro to Struggle Between NASA and the DoD for Control of Space Funding
 - The Great Bureaucratic Space War
 - Impact of Challenger & Columbia Disasters
 - Augustine Committee, Rogers Report
- Investigation of Difficulty in Funding Big-Budget, Long-Term, High-Tech Space Infrastructure Programs
 - Hard to Predict Specific Practical Applications

SAE 550 Lecture #5: Case Study #2

- The V-22 Tiltrotor "Osprey"
 - Example of the Development of a Mission System
 - Caught in Cross-Fire of Politics! (Congress vs. White House)
 - Political Impact of Technical Problems
 - Fixed-Wing vs. Helicopter: Which Is It? Both? Neither?
 - The Technical Challenges of a Convertiplane
 - The Challenge of FAA Certification for Civil Uses
- Department of Defense Constituency
 - Intro to Funding War Between the Forces: Air Force vs. Army vs. Navy (and Plight of Marine Corps Funding)
 - Multi-Role, Multi-Service, Multi-Mission Systems
 - Political Pressures to Develop; Resistance from the Forces
- Investigation of Difficulty in Funding Big-Budget, Long-Term, High-Tech Mission Systems Development & Construction

SAE 550 Lecture #6: Case Study #3

- Joint Strike Fighter / F-35
 - Continues to investigate how Political Processes apply to Global, Multiple Use / Multiple Country Systems
 - Examines the difficulty in replacing aging but very popular and still-functional Legacy systems
 - Choose between develop individual replacement systems, or designing a high-commonality platform that can be tailored to meet specific needs?
 - Demonstrates program survival when experiencing technological, programmatic, and political challenges
 - Program faced multiple cost overruns, technical challenges, and project cancellation hurdles during development
- Emphasizes the Critical Role of Constituency:
 - Program emphasized affordability but it turned out to be extremely costly— a challenge to constituency budgets!
 - Building every new fighter costs much more than its predecessors
 - JSF program played a key role in bringing Jobs to countries participating in the development process

SAE 550 Lecture #7: Case Study #4

- □ Ground Transportation Infrastructure (Roads, Autos, Trucks, Trains, etc.)
 - How Political Processes influence funding and approval of Public Infrastructures
 - Using the U.S. Ground Transportation Infrastructure as an example by examining the Historical Perspective of:
 - The Erie Canal Inland Waterways
 - The Transcontinental Railroad
 - U.S. Interstate Highway System
- Such Infrastructure Systems Suffer A Common Set Of Problems:
 - Require significant up-front investment & yield uncertain payback on that investment in the far future
 - The Key Any New Infrastructure is CONSTITUENCY
 - Everybody evaluates what the Political Process calls WIIFM:
 What's In It For Me
- Investigation of Difficulty in Obtaining Funding and Approval for the Creation, Maintenance, and Upgrades of Infrastructures

SAE 550 Lecture #8: Systems Engineering Concepts and Programmatic Risk Management

- Review of:
 - Systems Engineering and Architecting Fundamentals
 - Risk Management
 - Technical Leadership
- Applied to SAE 550 Class Content:
 - Systems Architecting and Engineering Activities
 - Systems Architecting Principles
 - Constraints Impact on System Architecture
 - Real Options in Systems Architecting
 - Trade-off Analysis & Steps
 - Risk and Risk Types, Identification, Management, Mitigation
 - Modeling Risks and Dealing with Uncertainties
 - Technical Leadership and Styles
 - Cognitive Biases & Mitigation Strategies

SAE 550 Lecture #9: Case Study #5

- Superconducting Supercollider (basic research)
 - Examines how Political Processes apply to Basic Research
 Systems
- Covers a Basic Research System that is:
 - Supposedly a Development Project
 - Intended for eventual Operation & Use
 - An example of critical need to develop & nurture Constituency
 - Extremely difficult to explain the Practical applications to the Political System
 - How does one guarantee the Political Benefits of such a project, when (by definition) one doesn't know for sure what the Technical Benefits might be?
 - There might not be <u>any</u> Technical Benefits, other than lessons-learned from failed experimentation!

SAE 550 Lecture #10: Case Study #6

- Precision Navigation Systems (GPS, GLONASS, Galileo, BeiDou, IRNSS, QZSS)
 - Examines how Political Processes apply to Global, Multiple Use Systems (Both Military and Civilian, and of Multiple Countries!)
 - Focuses on how the FOLs apply to <u>Services</u> (and not just to their Systems)
 - Investigates if the 5 Primary Political FOLs always apply, or are there Counter-Examples
 - Demonstrates how to discuss technical aspects of a Case Study
- Covers Global Services that are:
 - Extremely difficult to explain the potential applications to the Political System before first available for Use
 - How does one guarantee the Political Benefits of such a project, when one doesn't know for sure what <u>all</u> potential uses might be?
 - Many Global Services (e.g. Telecommunications) typically cause disruption of (and eventual replacement of) Legacy Systems and radically change Operations and Use via new/improved capabilities

SAE 550 New Case Studies & Homework Case Studies

- Lecture #11: New Case Study #7: California High-Speed Rail
 - Content still in development
- Lecture #12: New Case Study #8: Hoover Dam
 - Content still in development
- Lecture #13: New Case Study #9: Future Combat System (FCS)
 - Content still in development
- Homework Case Studies (from lectures used in previous semesters)
 - HW1: Superconducting Materials & Application
 - HW2: Space Station Freedom (SSF)
 - HW3: Assured Crew Return Vehicle (ACRV)
 - HW4: Federal Fire-Fighting Process
 - HW5: National AeroSpace Plane

SAE 550 Summary

- Students Exposed to a Broad Range of Political Impacts on Actual Case Study System Architecture and Design
 - Research, Design & Development of Mission Systems
 - Operation & Use of Mission Systems
 - Mission Processes: Operations, Logistics, Sustainment
 - Infrastructure Systems
 - Non-US Systems
- Students Required to Demonstrate (for their chosen topic and for 5 Homework Case Studies):
 - Political Impacts on System Architecture and Design
- Emphasis: Training Systems Architects & Systems Engineers in the Understanding and Application of Political Risk Mitigation Factors
 - Dr. Brenda Forman's "Political Facts Of Life"